Sinusoidal Cox Regression—A Rare Cancer Example

نویسنده

  • Jimmy Thomas Efird
چکیده

Evidence of an association between survival time and date of birth would suggest an etiologic role for a seasonally variable environmental exposure occurring within a narrow perinatal time period. Risk factors that may exhibit seasonal epidemicity include diet, infectious agents, allergens, and antihistamine use. Typically data has been analyzed by simply categorizing births into months or seasons of the year and performing multiple pairwise comparisons. This paper presents a statistically robust alternative, based upon a trigonometric Cox regression model, to analyze the cyclic nature of birth dates related to patient survival. Disease birth-date results are presented using a sinusoidal plot with peak date(s) of relative risk and a single P value that indicates whether an overall statistically significant seasonal association is present. Advantages of this derivative-free method include ease of use, increased power to detect statistically significant associations, and the ability to avoid arbitrary, subjective demarcation of seasons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model

Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...

متن کامل

Prognostic factors of survival of patients with oesophageal cancer under radiotherapy using cox regression model

oesophageal cancer is one of the most fatal cancer in human in spite of high incidence in the north of Iran and poor prognosis,there is not information regarding prognostic factors in this area.this study was conducted to determine prognodtic factors of the survival of patients with oesophageal cancer under radiotherapy.We conducted a descriptive-analytical study using historical cohort that ha...

متن کامل

مقایسه رگرسیون کاکس و مدل های پارامتریک در تحلیل بقای بیماران مبتلا به سرطان معده

Background & Objectives: Although Cox regression is commonly used to detect relationships between patient survival and demographic/clinical variables, there are situations where parametric models can yield more accurate results. The objective of this study was to compare two survival regression methods, namely Cox regression and parametric models, in patients with gastric carcinoma registered a...

متن کامل

استفاده از مدل چندجمله‌ای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده

Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...

متن کامل

تحلیل بقای بیماران سرطان کولورکتال و عوامل پیش‌آگهی دهنده با استفاده از مدل رگرسیون کاکس

 Background: Colorectal cancer is the third current cancer in the world and the forth cause of death in cancers. Certain factors such as environmental, genetic and life style are related with this cancer. The objective of this study is to find the survival of Iranian patients with colorectal cancer and also to find its prognostic factors. Methods: In this survival study, the data was co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010